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AN A~PR~X~~ATiON IN THE PROB~EN OF &ONTR~~~~NE THE SHAPE 
OF THE REGION FOR A PARABOLIC SYSTEMn 

S.P. OKHEZIN 

A study is presented of the problem of optimal control of the shape of 
the region for the heat-conduction equation, It is proposed to 
approximate the problem by a penalty method applied to the shape of the 
region. The approximation leads to the investigation of a standard 
control problem for a bilinear parabolic system in a fixed region. 

In applications one quite frequently encounters problems requiring the solution of the 
heat-conduction equation for regions whose shapes vary with time 11-41. 

Such problems arise when one is studying energy or mass transfer problems related to 
changes in the state of aggregation of matter ~'5, 6/, in problems of dam theory, soil mechanics, 
the temperature distribution in oil layers, and in filtration problems. The solution of aif- 
fusion problems for regions with moving boundaries is basic for the theory of zone refining 
of materials /3f, From the matbemati~a~ point of view, boundary-value problems of heat con- 
duction in a region with a moving boundary are essentially different from classical heat-con- 
duction problems. Since the geometricaL dimensions of the region depend on time, general 
problems of this type cannot be dealt with by the classical methods normally used in mathe- 
matical physics. 

Problems of this sort for elliptic control problems were formulated in the+urvey article 
/7/. A thorough treatment of these problems may be found in /a/. 

The major complication to be overcome in studying control.problems in time-variable regions 
is that one must deal with state functions Y (L 5) which are defined at different times t in 
different regions in 5 space. To that end, this paper proposes a method based on penalties, 
which depend on the shape of the region, which enables us to reduce a problem with a variable 
region to a problem defined in a preassigned fixed set. The latter differs in structure'from 
the original region only in the presence of an additional penalty term, which contains all the 
information on the shape of the region and is an analogue of a bilinear control system depend- 
ing on a large parameter. 

The present paper is devoted to an investigation of the properties of this new approxi- 
mating system. 

1. Statement of the problem. Consider a system whose state is described by the following 
equations: 

(i.1) 

(IA) 

(1.3) 

(1.4) 

0.5) 

Here y (f? 4 is the state of the control system at tine t, which is a measurable function of 
I in the interval 10, u ($)I, and q(x) is the initial distribution of 8. The function rt(t) is 
absolutely continuous and satisfies Eq.ll.4) for almost all t; u(l) is a Lebesgue-measurable 
function in IO,Vl, which plays the role of control and defines the "shape" of a nan-cylindri- 
cal region Q (U) = ((t, r) I t E (0, 27, 0 < S-K 16 @I) in which the arguments t and x are allowed to 
vary. Dots denote differentiation with respect to time and primes denote differentiation with 
respect to 2. Thus, the state of the system at any tine tf IO, T] is a function Y (L z). 
defined for t CZ 10, u(t)]. 

On the states of this system, considered at time T, we are given a functional. which plays 
the part of a cost criterion: 

jr (u (.)) = G (u (T, .)) (1.6) 

Our problem is to determine a control u" (.) which minimizes this functional: $(I" (.)) --= 
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inf J(u(+)) over all admissible controls u(.). (The method proposed below to simulate problems 
of controlling the shape of a region can be extended to optimization problems with other cost 
criteria; see, e.g., Sect.4 below). 

To solve this problem, we propose the following mathematical model. Choose a number X 
so that, for all u(t)62 IO, VI, u(t)E 10,X1, and, fixing a region D = (0, T) x (0,X), consider the 
following model problem, which depends on a parameter E> 0: 

YB. (t. x) - Y," (t, x) 4 s-'U (t, x) YE (t, x) = 0, (t, I) ED (1.7) 

10, X~(&,X] 
Ye(0.l) = *(~)=~(p(z)tIE [O&,1 

ye (t, s) = 0, (t, z) 62 1 = IO, TI x ((0) ii {X}) 

u' (t) = v(t), a.e.t E [O, Tl, u (0) = u0 (1.8) 

The last term in Eq.tl.7) plays the role of a penalty term. The state of the new control 
system y,(t,x) at any time t is a function defined for SF%IO,X). The variation with time 
of the shape of the region is described by the function U(t,x). In structure, Eqs.11.7) and 
(1.8) constitute a bilinear control system of parabolic type, depending on the approximation 
parameter .s> 0. It is natural to expect that as E-+0 the solutions of this system will 
approximate the solutions of system (l.l)-(1.5) in a suitable function space. 

In the sequel we shall consider different cost criteria G, defined on various function 
spaces. An example is the functional 

G(z(-)) =f[z(+&(“)I’~x 

where ~(22) is a given function in &(0,X) (see also Sect.4). 
Control systems of type (l.?f-(1.9) have been thoroughly investigated in the literature 

on optimal control in distributed systems /4, 7/. Solutions which depend on the parameter E 
exist and there is an abundance of approximate methods for determining them. 

The main result of this paper is the statement that as F +O the optimal solutions of 
problem (1.7)-(1.9) converge to an optimal solution of problem (l.l)-(1.6). 

2. Nathematicd fomtization. We shall use the following notation. H'(n) is the Sobolev 
space of first order on the set 8 /g-11/: f Is denotes the restriction of the function f (the 
trace,if it exists)to the set s; H,'(e) = {If? fP(fz) If \r = 0: r = as& SPPPf is the support 
of a function (distribution) f; Z (u) = [0, T] x (0) l_j ((2,x) / t E 10, 7'1, z = u (tf}. 

Definition. A solution of problem (l.lf-(1.5) is any function y satisfying the conditions 

Y fz H' (0 (u)), Y Is(u) = 0, Y 12=0 = cp 

and the integral identity 

f f { y’x -I- y’x’} dxdt = 0, V% E m (u) = 
QfW 

@EC" (Q(~))j-bft=[O, T]suppx(t, .)c(O, u(t)), #(T,x) zs 0) 

A generalized solution of the approximating system will be understood in the sense of the 
theory of distributions - an element of the space L, (0, 2'; H,I(O,X)) fl w'(O, T;& (0, X)) l-l L (0, 
T; L,(O,X)) /9-U/. 

Standard methods /g-11/, coupled with the use of a priori estimates in energy norms, yield 
a proof of the following theorem. 

Theorem 1. Let 9 E H,' (0, Uo). Then a unique solution of problem (l.l)-(1.5) exists. 

3. Uain resutts. Let ~(t,x;u(*)) denote a solution of system (l.l)-(1.5), defined as 
zero on the set D\Q(U) and corresponding to a specific function u (e) determining the 

shape of the region. Let Ye (t, x; u (.)) be the corresponding solution of system (1.7), (1.8). 

Theorem 2 (uniform approximation with respect to u(m). As s -+O 8.z (T, -; u f.)) -+ _V(T, .; 
ZJ (-)) weakly in &,(0,X) and uniformly on the set of all admissible controls {u(a)}. 

Remarks. 1. Because of the restrictions imposed on the parameters of the system, the 
admissible controls u (*) are monotone increasing functions. This enables one, using standard 
methods /IO/, to establish energy estimates for the derivatives y,' in the metric of the space 
& (0, T; L1 (0, X)) which are uniform in {u(.)) and independent of e>o; in the final analysis, 
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this is what guarantees the desired uniform approximation property. 
2. Using a probability representation for the solution of system (1.7), (1.8), /12, 13/, 

one can prove a stronger assertion, according to which II, converges to y in the metric &(0,x) 
uniformly on a larger class of admissible controls tu (.)1 (not necessarily monotone). 

3. Since the convergence of Y&T, +; u(.)) to Y G", .; I&(.)) is uniform in (I&(.)}, one can 

consider (1.7), (1.8) as an approximation to system (l.l)- (1.51. An optimal control v,"(.) 
solving the optimization problem (1.7)-(1.9) exists /ll, 14/ and, since the set {v(a)) is 
compact in the weak topology of L, (0, T), it converges as E--10 to a control lJ" t.1 which is 
a solution of problem (l.l)-(1.61. Thus, the control problem for system (1.1)-(1.5) can be 
approximated by a control problem for the standard control system (l-7), (1.8). 

4. The approximating system differs from the system under consideration only in the 
presence of the additional penalty term. 

5. If the regions O(U)(~) = p(=) {: {I r a} vary monotonically with time (in the sense of 
set inclusion), the above results admit of a natural generalization to more general equations 
of parabolic type, in which 3: may take values in several dimensions. 

4. As an example of the approximation method proposed above, we will consider its appli- 
cation to the single-phase Stefan problem. 

The classical model of the one-dimensional frontal Stefan problem is described by the 
following equations /5, 6/: 

y' (t, z) = y' (t, z), t > 0, 0 < z < U (t) 
(4.1) 

y (0, z) = 'PO (z). 0 ,': z ; u,: y (t, 0) = 0, y (1, U (t)) = 0 
y' it, n (t)) --= - ku' (tf, t > 0; U (0) = u, 

Here Y if, 4 is the temperature of the "liquid" phase at a point CC at time t. The function 

'PO (*) describes the initial distribution of temperature in the "liquid" phase, and 'L (t) 
descxibes the changes taking place in the shape of the region occupied by the liquid phase. 
At any time t,u(t) is the phase interface. The penultimate condition in (4.1) is the 
mathematical expression for the equation of thermal balance at the interface. 

Using the above results, we can formulate the Stefan problem as an optimal control problem 
for the shape of the region for the heat-conduction equation. 

Based on the form of the function cpo(,), one can derive an a priori estimate f5, 6f for 
the value of the derivative u. (t) 55 V (t) in the Stefan problem. We shall assume that this 

estimate is known: L'(t) 555 lo, VI and the number X is so chosen that u(t) E(O,;Y) VLE(~, Tl. 
Consider the corresponding model problem of optimal control: 

y, (t, 0) = 0, y, (1, S) = 0, Vd E. (0, T] (4.2) 

u‘ (tj = u (t), u (Oj = fz,, 

J(&,U(.N =f IY,'( 1. u(t)) ,- ku(t)jzdt - inf (4.:1) 

" 

Here .Y~ (t, Z) is a function corresponding to the "shape" of the region in which the process 
is evolving; it is equal to 

0, O<i<11(l) 

E',(t,r)= 

i 

iu,(x-~(it)-&),tl(t)<Z~C:((f) _E 

I, u(t) -E<.z<X 

The number C is determined by the condition 

In its structure, u,(t,z) is a smooth regularization of the characteristic function iJ(t,r). 
The choice of the smooth function cr,(t,x) approximating the characteristic function V(t,z) 

is dictated by the form of the cost criterion (4.3). 
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Using the technique employed in Theorem 2, one can show that problem (4.2), (4.3) has a 
solution y, (t, 5; u," (.)). uEo (.). which converges as e-0 to a solution of the Stefan problem. 

The solution y, (t, S; II," (.)) converges to y(t,z) in the norm of L,,(D), while u; (.) converges 
to u0 (.) in the weak topology of L,(O,T). 

Thus, the penalty method proposed in this paper enables one to reduce the solution of the 
Stefan problem to an optimal control problem for the specially constructed system (4.2), whose 
solution for sufficiently small e>o differs only slightly from the solution of the Stefan 
problem. 
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